Digital Humanities At Scale: Hathi Trust Research Center

Beth Plale

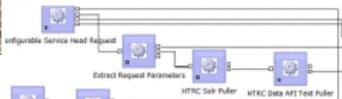
Co-Director, HathiTrust Research Center
Professor, School of Informatics and Computing
Indiana University

New questions require computational access to large corpus

Investigate way in which concepts of philosophy are used in physics through

- Extracting argumentative structure from large dataset using mixture of automated and social computing techniques
- Capture evidence for conjecture that availability of such analyses will enable innovative interdisciplinary research
- Digging into Data 2012 award, Colin Allen, IU

New questions, cont.


Document through software text analysis techniques, the appearance, frequency and context of terms, concepts and usages related to human rights in a selection of Englishlanguage novels.

 Ronnie Lipschutz of UCSC is currently doing this analysis on one of Jane Austen's books. He'd like to extend the work to encompass a far larger corpus.

New questions, cont.

Identify all 18th century published books in HathiTrust corpus, and apply topic modeling to create a consistent overall subject metadata

GOOGLE DIGITAL HUMANITIES AWARDS RECIPIENT INTERVIEWS REPORT PREPARED FOR THE HATHITRUST RESEARCH CENTER VIRGIL E. VARVEL JR. ANDREA THOMER CENTER FOR INFORMATICS RESEARCH IN SCIENCE AND SCHOLARSHIP UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

The study

- Dr. John Unsworth, a representative of HTRC, distributed invitations to participate in this study via email to 22 researchers given Google Digital Humanities Research Awards.
- Interviews were conducted via telephone, Skype®, or face-to-face, and all were audio recorded. All participants agreed to IRB permission statement via email.
- A semi-structured interview protocol was developed with input from HTRC to elicit responses from participants on primary goals of project.

Select findings

- Optical Character Recognition
 - Steps should be taken to improve OCR quality if and when possible
 - Scalability of scanned image viewing is necessary for OCR reference and correction
 - Metadata should expose the quality of OCR

Select Findings

- "Would like better metadata about text languages,
 particularly in multi-text documents and on language
 by sections within text. Automatic language
 identification functions would be helpful, but humancreated metadata is preferred, particularly for
 documents with low OCR quality."
- "primary issue was retrieving the bibliographic records in usable form, unparsed by Google. [...] process took 10 months to design the queries and get the data."

HathiTrust Research Center:

dedicated to provision of
computational access to
comprehensive body of published
works for scholarship and
education

Home

About

Collections

My Collections

Currently Digitized

10,100,278 total volumes

5,345,001 book titles

266,113 serial titles

3,535,097,300 pages

453 terabytes

120 miles

8,206 tons

2,784,331 volumes (~28% of total) in the public

domain

View visualizations of HathiTrust call numbers, languages, and dates

→ HathiTrust is large corpus providing opportunity for new forms of computation investigation.

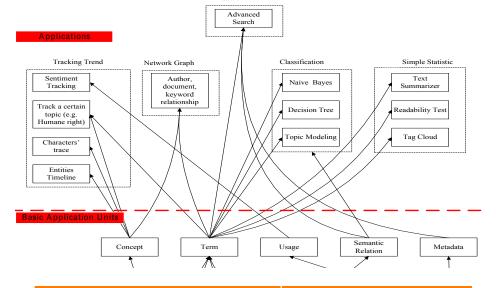
→ The bigger the data, the less able we are to move it to a researcher's desktop machine

→ Future research on large collections will require computation moves to the data, not vice versa

statistics information >>

Goal of HTRC

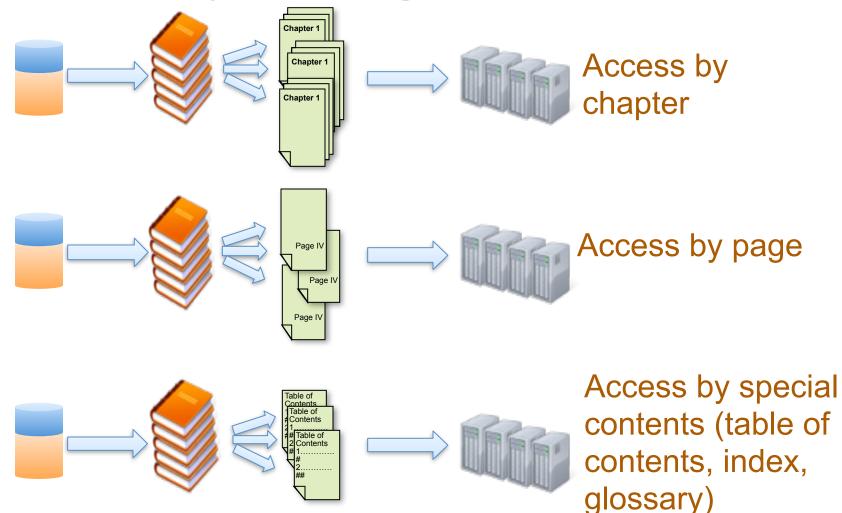
- HTRC will provide a persistent and sustainable structure to enable original and cutting edge research.
- Stimulate the development in community of new functionality and tools to enable new discoveries that would not be possible without the HTRC.


Goal, cont.

- Leverage data storage and computational infrastructure at Indiana U and UIUC,
- Provision secure computational and data environment for scholars to perform research using HathiTrust Digital Library.
- Center will break new ground, allowing scholars to fully utilize content of HathiTrust Library while preventing intellectual property misuse within confines of current U.S. copyright law.

HathiTrust Research Center

- Analysis on 10,000,000+ volumes of HathiTrust digital repository
- Founded 2011
- Working with OCR
- Large-scale data storage and access
- HPC and Cloud



Type of Data (Public domain and copyrighted works)	Estimated initial size: 300-500 TB
Solr Indexes	36 TB (3 indexes)
File system rsync	12 TB
Fast volume access store	30TB
Versions of collection (5)	120 TB
Volume store indexes	100 TB

Corpus Usage Patterns

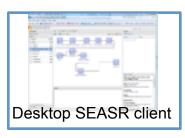
02/29/12

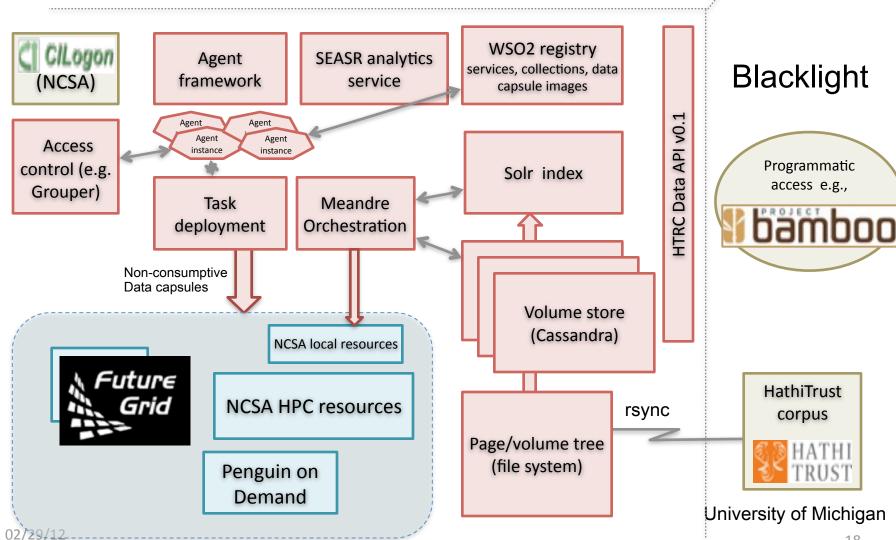
HTRC Timeline

- Phase I: an 18-mo development cycle
 - Began 01 July 2011
 - Demo of capability June 2012 (12 mo mark)
- Phase II: broad availability of resource, begins
 01 January 2013

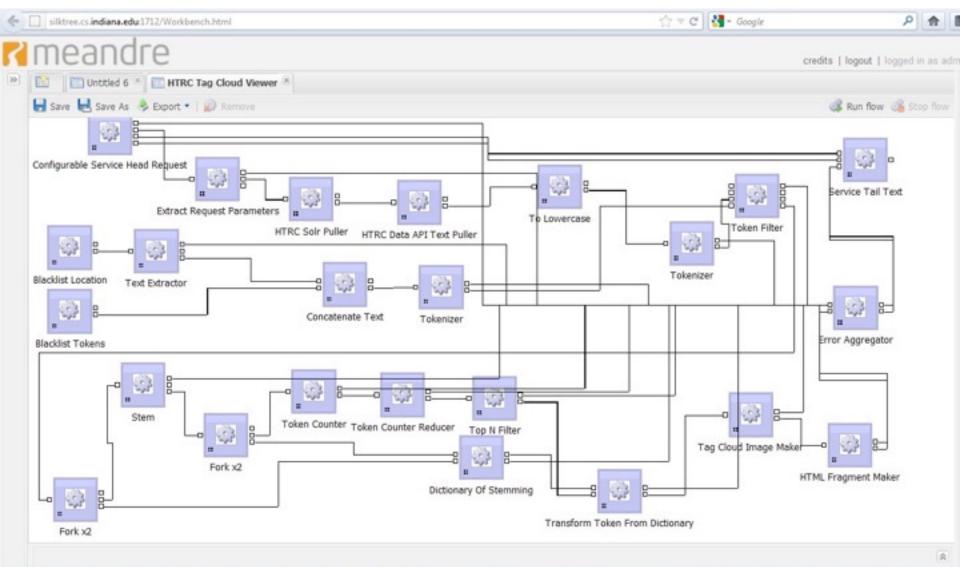
Governance

- HTRC Exec Management Team: Beth Plale (IU), chair;
 Robert McDonald (IU), Marshall Scott Poole (UIUC), J.
 Stephen Downie (IU), John Unsworth (Brandeis Univ)
- Advisory board
- MOUs guide IU-UIUC interaction and HTRC-HT interaction
- Laine Farley, California Digital Library, and HT Executive Committee is liaison to HTRC
- Google Public Domain agreement in process of signing (IU and UIUC individually executing)


What is it architecturally?


- Web services architecture and protocols
- Registry of services and algorithms
- Solr full text indexes
- noSQL store as volume store
- Large scale computing
- openID authentication
- Portal front-end, programmatic access
- SEASR mining algos

02/29/12



One access point: through SEASR

02/29/12

← □

SEASR: workflow used to generate tagcloud

told death
the friend hanke

wite good iff

ather day county

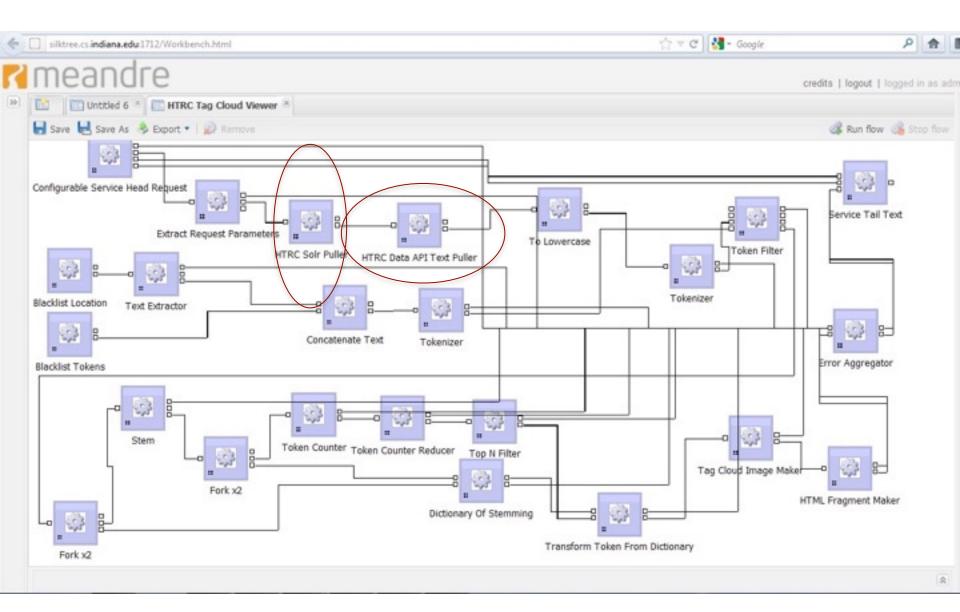
white day county

wite day county

church good letter knew

general

nature wife inorth


believes faith

baternal

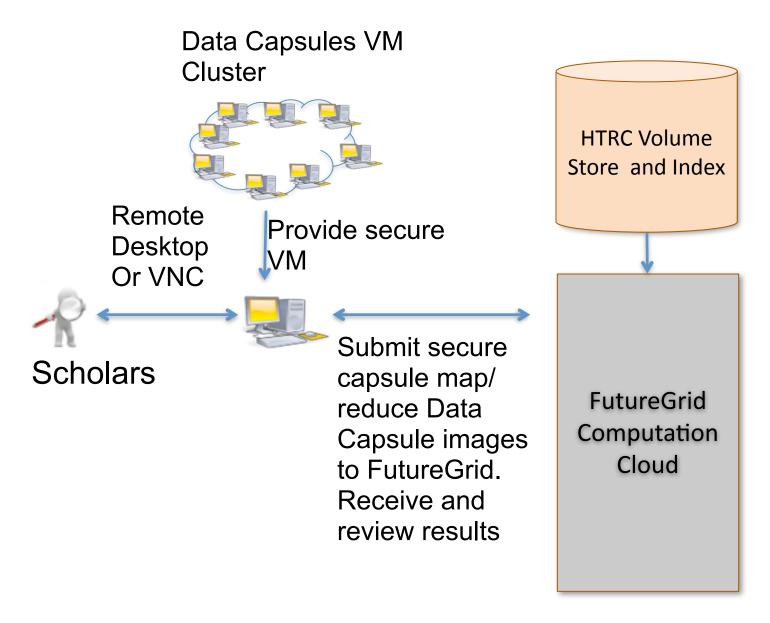
north

Query = title:Abraham Lincoln AND publishDate:1920

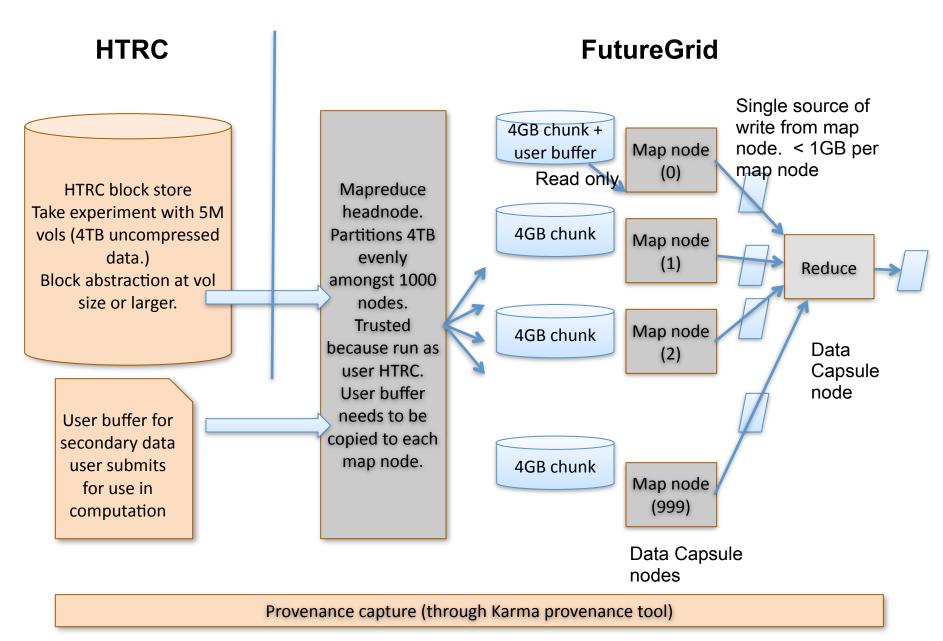
Workflow invokes HTRC Solr index and HTRC data API.

02/29/12

HTRC Solr index


- The Solr Data API 0.1 test version available.
 - Preserves all query syntax of original Solr,
 - Prevents user from modification,
 - Hides the host machine and port number HTRC
 Solr is actually running on,
 - Creates audit log of requests, and
 - Provides filtered term vector for words starting with user-specified letter
- Test version service soon available

HTRC Solr index: most used API patterns


- ===== query
- http://coffeetree.cs.indiana.edu:9994/solr/select/?q=ocr:war
- ====faceted search
- http://coffeetree.cs.indiana.edu:9994/solr/select/?
 q=*:*&facet=on&facet.field=genre
- ===get frequency and offset of words starting with letter
- http://coffeetree.cs.indiana.edu:9994/solr/getfreqoffset/inu.
 32000011575976/w
- ==== banned modification request:
- http://localhost:8983/solr/update?
 stream.body=<delete><query>id:298253</query></delete>&commit=truethanks,

Requirement: run big jobs on large scale (free or nearly free) compute resources

Secure Data Capsule

Acknowledgements

FutureGrid allows researchers to experiment at all levels, including customizing network protocols and experimenting with new middleware. By using virtual machines running on real hardware, FutureGrid enables scientists to have full control over their testing environments without interfering with other users.

Scientists can also pursue interactive research and international collaboration, creating unprecedented potential for scientific discovery and innovation as they explore new uses for cloud technologies in science and engineering. Additionally, FutureGrid's availability to university students familiarizes the next generation of workers with these paradigms and their applications.

PI: Geoffrey Fox

CoPIs: Kate Keahey, Warren Smith, Jose Fortes, Andrew Grimshaw

Software Lead: Gregor von Laszewski

FutureGrid is sponsored by NSF grant #091081—FutureGrid:An Experimental, High-Performance Grid Test-bed. Partners in the FutureGrid project include: Indiana University, University of Chicago, Texas Applied Computing Center, University of Florida, University of Virginia, San Diego Supercomputer Center, Information Sciences Institute, Purdue University, University of Tennessee, and Technical University Dresden.

To learn how to join FutureGrid and apply for your own project, visit:

portal.futuregrid.org/gettingstarted

Copyright 2011, The Trustees of Indiana University

An Experimental Grid Cloud and HPC Test-Bed

The FutureGrid project's mission is to enable experimental work that advances innovation and scientific understanding of distributed and parallel computing paradigms and:

- The engineering science of middleware that enables them
- Their use and drivers by important applications
- The education of new generations of students and personnel

About FutureGrid

Typical FutureGrid projects

FutureGrid is a distributed, high-performance test-bed that allows scientists to collaboratively create and test innovative approaches to parallel, grid, and cloud computing.

The test-bed comprises distributed clusters of high-performance computing resources connected to a high-speed network and linked to TeraGrid—the NSF's national cyberinfrastructure for scientific research.

The FutureGrid project is led by Indiana University and funded by the National Science Foundation.

Operational model

FutureGrid's operating model is different from both TeraGrid conventional clusters and commercial clouds, achieving flexibility by dynamically provisioning software onto "bare-metal" instead of loading images onto virtual machines. FutureGrid supports a growing Image Library that features platforms such as:

- MPI
- gLite
- OpenMP
- Unicore
- Hadoop
- · Globus
- Dryad
- Xen

The flexibility in the configuration of FutureGrid resources enables its use across a variety of research and education projects. More than 120 projects are currently underway. The following are either complete or have attained significant achievements.

1	7			
	Project	Institution	Details	
Educational Projects				
	System Programming and Cloud Computing	Fresno State	Teaches system programming and cloud computing in different computing environments	
	REU: Cloud Computing	Arkansas	Offers hands-on experience with FutureGrid tools and technologies	
ı	Workshop: A Cloud View on Computing	Indiana School of Informatics and Computing (SOIC)	Bool camp on MapReduce for faculty and graduate students from underserved ADMI Institutions	
Ì	Topics on Systems: Distributed Systems	Indiana SOIC	Covers core computer science distributed system curricula (for 60 students)	
	Interoperability Projects			
	BAGA	Louisiana State	Explores use of Future-Grid components for extensive portability and interoperability testing of Simple API for Grid Applications, and scale-up and scale-out experiments	
I			tion Projects	
ı	Metagenomics Clustering	North Texas	Analyzes metagenomic data from samples collected from patients	
ı	Genome Assembly	Indiana SOIC	De novo assembly of genomes and metagenomes from next generation sequencing data	
ı	Non-Bio Application Projects			
i	Physics: Higgs boson	Virginia	Matrix Element calculations representing production and decay mechanisms for Higgs and background processes	
I	Business Infelligence on MapReduce	Cal State - L.A.	Market basket and customer analysis designed to execute MapReduce on Hadoop platform	
ı	Computer Science Projects			
ı	Dafa Transfer Throughput	Duffalo	End-to-end optimization of data transfer throughput over wide-area, high-speed networks	
ı	Elastic Computing	Colorado	Tools and technologies to create elastic computing environments using laaS clouds that adjust to changes in demand automatically and transparently	
	The VIEW Project	Wayne State	Investigates Nimbus and Eucalyptus as cloud platforms for elastic workflow scheduling and resource provisioning	
Technology Projects			gy Projects	
	ScaleMP for Gene Assembly	Indiana Pervasive Technology Institute (PTI) and Biology	Investigates distributed shared memory over 16 nodes for SOAPdenovo assembly of Daphnia genomes	
	X\$ED€	Virginia	Uses FutureGrid resources as a testbed for XSEDE software development	
	Globus Online	Indiana PTI, Chicago	Investigates the feasibility of providing DemoGrid and its Globus services on FutureGrid laa5 clouds	
ı				

~-,--,--

Creating Functionality around Non-consumptive Research

Key notions

Notion of a Proxy

- "researcher" in Google Book Settlement definition means a human
- An avatar is a virtual life form acting on behalf of person
- Computer program acts on behalf of person
- Computer program (i.e., proxy) must be able to read Google texts, otherwise computational analysis is impossible to carry out.
- So non-consumption applied to books applies to human consumption.

Non-consumptive research – implementation definition

- No action or set of actions on part of users, either acting alone or in cooperation with other users over duration of one or multiple sessions can result in sufficient information gathered from collection of copyrighted works to reassemble pages from collection.
- Definition disallows collusion between users, or accumulation of material over time.
 Differentiates human researcher from proxy which is not a user. Users are human beings.

Notion of Algorithm

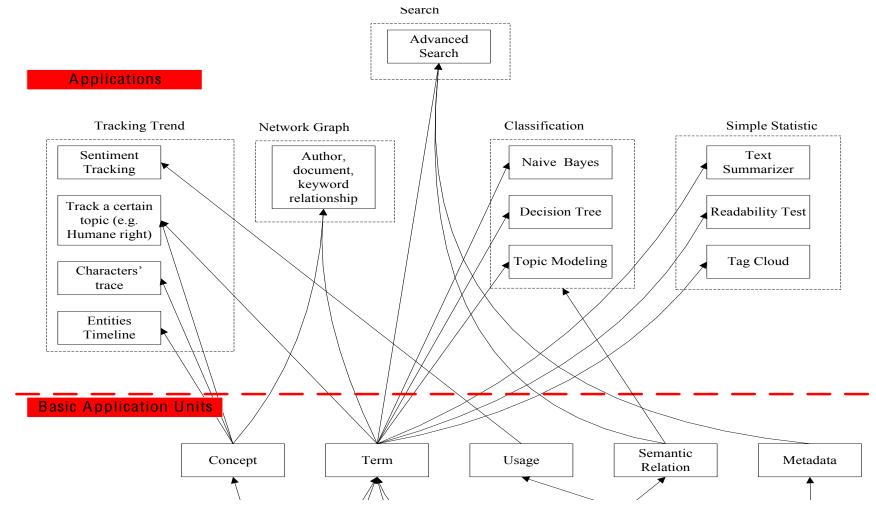
- Computational analysis is accomplished through algorithms
 - An algorithm carries out one coherent analysis task: sort list of words, compute word frequency for text
- Researcher's computational analysis often requires running sequence of algorithms.
 Important distinction for implementing nonconsumptive research is "who owns the algorithm"?

Infrastructure for computational analysis

- When needing to support computation over 10+M volume corpus, algorithms must be colocated with data.
- That is, algorithms must be located where repository is located, and not on user's desktop.
- When computational analysis is to be nonconsumptive, likely one location for the data.

Who owns algorithm?

- HTRC owns the algorithms,
 - use Software Environment for Advancement of Scholarly Research (SEASR) suite of algorithms
 - we are examining security requirements of users, algorithms, and data


User owns and submits their algorithms

- HTRC recently received funding from Alfred P.
 Sloan foundation to prototype "data capsule framework" that provisions for non-consumptive research.
- Founded on principle of "trust but verify".
 Informatics-savvy humanities scholar is given freedom to experiment with new algorithms on protected information, but technological mechanisms in place to prevent undesirable behavior (leakage.)

Non-consumptive, user-owned algorithms infrastructure; requirements:

- Implements non-consumptive
- Openness users not limited to using known set of algorithms
- Efficiency Not possible to analyze algorithms for conformance prior to running
- Low cost and scale Run at large-scale and low cost to scholarly community of users
- Long term value –adoption for other purposes

Categories of algorithms. Can fair use be determined based on categorization of algorithm? Or is all computational use fair use?

02/29/12

Algo results fair use?

- Center supplied
 - Easier because we know category of algorithm
- User supplied
 - HTRC is not examining code, so open question

Parting philosophy

 Finally, results of computational research that conforms to restrictions of non-consumptive research must belong to researcher

How to Engage

- Building partnership with researchers and research communities is key goal of the HathiTrust Research Center
- HTRC can give technical advice to researchers as they look for funding opportunities involving access to research data
- Upcoming "Fix the OCR and Metadata Shortage Community Challenge": help us address couple key weaknesses of HT corpus